Blogia
SÓLO CIENCIA

Nanofabricación: ¿Cincelar lo grande o unir lo pequeño?

Nanofabricación: ¿Cincelar lo grande o unir lo pequeño?

Como epílogo al presente curso 2010/2011, me gustaría ofrecer a los lectores de nuestro blog un artículo publicado en el periódico digital EL MUNDO, cuya autora es Mónica Luna, investigadora en Nanociencia y Nanotecnología del Instituto de Microelectrónica de Madrid (CNM-CSIC), y que trata el tema de la nanotecnología -y en concreto de la nanofabricación: su proceso y expectativas de futuro-: 
 
 

Un buen ejemplo para entender la necesidad de fabricar estructuras cada vez más pequeñas lo encontramos en la industria electrónica. ¿Cómo de rápidos y potentes pueden ser nuestros ordenadores?, ¿se podrá alguna vez fabricar ’cerebros’ informáticos con capacidades semejantes a las de los seres humanos?, las respuestas a estas preguntas dependen, en cierta medida, de cómo de pequeños y densos seamos capaces de fabricar los  circuitos electrónicos.

En 1965, G. E. Moore estableció la ley que lleva su nombre y que predice que el número de transistores que pueden colocarse en un circuito integrado de silicio, y por lo tanto la velocidad de computación, se dobla aproximadamente cada dos años. Sorprendentemente esta ley se ha cumplido durante las últimas 4 décadas. Actualmente la  industria microelectrónica  es capaz de fabricar casi  3 billones de transistores  por circuito.
 

¿Quitamos material o lo vamos añadiendo?

Para fabricar estructuras cada vez más pequeñas se han planteado dos estrategias distintas. La primera consiste en partir de una cantidad apreciable de material e ir eliminándolo poco a poco, de forma semejante a cómo un escultor se va deshaciendo de la roca sobrante hasta alcanzar el tamaño y forma que desea. A esta opción se le ha denominado método ’descendente’. Es de esta forma como se ha conseguido fabricar los diminutos transistores actuales, cuyas  partes más pequeñas miden unas pocas decenas de nanómetros.  Esta reducción de la materia inorgánica ’dura’, como por ejemplo el silicio de los transistores, se acerca a la nanoescala desde arriba, esculpiendo.

La segunda estrategia es la opuesta a la anterior: partir de los elementos más pequeños posibles (por ejemplo átomos o moléculas) y unirlos hasta formar  sistemas de tamaño nanométrico.  Esta metodología ha sido denominada ’ascendente’.

 ¿Cuál se impondrá?

Cada propuesta tiene sus propias ventajas y aplicaciones. Sin embargo, la mayor parte de la comunidad científica ha llegado al convencimiento de que la opción que mayor alcance tendrá en el futuro será la de la  construcción desde abajo, a partir de unidades pequeñas.  Un método ascendente muy prometedor consiste en elegir adecuadamente las fuerzas que actúan a pequeña escala (fuerzas químicas, eléctricas, magnéticas y sofisticaciones de las anteriores que actúan entre átomos y moléculas) para que de forma autónoma se vayan componiendo las nanoestructuras que necesitemos. Esta forma de nanofabricación se denomina ’autoensamblaje’. El auto-ensamblaje es también la opción que ha elegido la naturaleza para fabricar sus componentes biológicos.

Los esquemas muestran cómo se auto-ensambla una nanopartícula magnética para su investigación en aplicaciones biomédicas. La profesora de investigación Soledad Penadés somete esta primera disolución con diferentes moléculas a distintos procesos químicos que disparan las fuerzas de interacción que hace que se unan los átomos de oro y hierro, formando un núcleo inorgánico con una envuelta de material orgánico.
 La escala nanométrica: el lugar de encuentro en la actualidad

Justo es ahora cuando  dos grandes campos de las ciencias naturales se están encontrando.  Por una parte, se está consiguiendo reducir el tamaño de la materia inorgánica dura, acercándose a la nanoescala desde arriba. Por otra parte, químicos orgánicos y biólogos cada vez están sintetizando y manipulando materia orgánica ’blanda’ (moléculas, polímeros,…) de mayor tamaño, acercándose a la nanoescala desde abajo.

Aunque las estructuras utilizadas en los dispositivos son todavía minerales (semiconductores, cerámicas, metales, óxidos), los sistemas más fiables y de  mejor rendimiento  son aquellos que se encuentran en los  organismos vivos. Ahora que las dimensiones de trabajo de ambos campos están convergiendo, se está empezando a considerar el incluir las estructuras y dispositivos inspirados por la sabia naturaleza en soluciones a problemas de importancia para la sociedad actual.
 

La nanoelectrónica del futuro

Existe un amplio consenso en que la microelectrónica actual, basada en la tecnología del silicio, no continuará creciendo según la Ley De Moore más allá del 2015. El motivo es que llegará un punto en el que  no será económicamente viable seguir miniaturizando los componentes.  A la dificultad de fabricación se une a la necesidad de disipar el calor generado por los dispositivos tan densamente empaquetados.

Para seguir aumentando la velocidad de computación será necesario encontrar caminos alternativos. Numerosos grupos de investigación están explorando la posibilidad de utilizar moléculas orgánicas como transistores. Si un transistor actual fuese como esta página de grande, un transistor molecular equivalente tendría el tamaño de un punto ortográfico. Uno de los principales retos de la nanotecnología y la nanociencia es  aprender a unir componentes orgánicos e inorgánicos  para explotar atributos específicos individuales en nuevas estructuras híbridas.

 

 Igual de interesante es la sección que el mismo periódico dedica a la nanociencia:

*Nanomundo-El universo de lo pequeño

1 comentario

Jose -

Muchas gracias, Juan de Dios.
El año que viene este blog te echará mucho de menos, aunque sigue estando a tu disposición por si quieres publicar cualquier artículo.
Gran parte del éxito de las más de 76.000 visitas durante el curso se deben a tus muchos e interesantes artículos.
Otra vez gracias.